浅析云计算的五大关键技术
来源:中国报告大厅
据中国报告大厅发布的《2014-2020年中国云计算行业深度调研及发展趋势分析报告》指出云计算的五大关键技术如下:
1、虚拟化技术
虚拟化技术是指计算元件在虚拟的基础上而不是真实的基础上运行,它可以扩大硬件的容量,简化软件的重新配置过程,减少软件虚拟机相关开销和支持更广泛的操作系统方面。通过虚拟化技术可实现软件应用与底层硬件相隔离,它包括将单个资源划分成多个虚拟资源的裂分模式,也包括将多个资源整合成一个虚拟资源的聚合模式。虚拟化技术根据对象可分成存储虚拟化、计算虚拟化、网络虚拟化等,计算虚拟化又分为系统级虚拟化、应用级虚拟化和桌面虚拟化目。在云计算实现中。计算系统虚拟化是一切建立在“云”上的服务与应用的基础。虚拟化技术目前主要应用在CPU、操作系统、服务器等多个方面,是提高服务效率的最佳解决方案。
2、分布式海量数据存储
云计算系统由大量服务器组成,同时为大量用户服务,因此云计算系统采用分布式存储的方式存储数据,用冗余存储的方式(集群计算、数据冗余和分布式存储)保证数据的可靠性。冗余的方式通过任务分解和集群,用低配机器替代超级计算机的性能来保证低成本,这种方式保证分布式数据的高可用、高可靠和经济性,即为同一份数据存储多个副本。云计算系统中广泛使用的数据存储系统是Google的GFS和Hadoop团队开发的GFS的开源实现HDFS。
3、海量数据管理技术
云计算需要对分布的、海量的数据进行处理、分析,因此,数据管理技术必需能够高效的管理大量的数据。云计算系统中的数据管理技术主要是Google的BT sT~lO数据管理技术和Hadoop团队开发的开源数据管理模块HBase。由于云数据存储管理形式不同于传统的RDBMS数据管理方式,如何在规模巨大的分布式数据中找到特定的数据,也是云计算数据管理技术所必须解决的问题[61。同时,由于管理形式的不同造成传统的SQL数据库接口无法直接移植到云管理系统中来,目前一些研究在关注为云数据管理提供RDBMS和SQL的接口,如基于Hadoap子项目HBase和Hive等。另外,在云数据管理方面,如何保证数据安全性和数据访问高效性也是研究关注的重点问题之一。
4、编程方式
云计算提供了分布式的计算模式,客观上要求必须有分布式的编程模式。云计算采用了一种思想简洁的分布式并行编程模型Map—Reduce。Map—Reduce是一种编程模型和任务调度模型。主要用于数据集的并行运算和并行任务的调度处理。在该模式下,用户只需要自行编写Map函数和Reduce函数即可进行并行计算。其中,Map函数中定义各节点上的分块数据的处理方法,而Reduce函数中定义中间结果的保存方法以及最终结果的归纳方法。
5、云计算平台管理技术
云计算资源规模庞大,服务器数量众多并分布在不同的地点,同时运行着数百种应用,如何有效的管理这些服务器,保证整个系统提供不问断的服务是巨大的挑战。云计算系统的平台管理技术能够使大量的服务器协同工作,方便的进行业务部署和开通,快速发现和恢复系统故障,通过自动化、智能化的手段实现大规模系统的可靠运营。