大数据时代的农业银行金融创新
来源:中国金融电脑杂志
大数据为银行创造了深化客户挖掘、加快产品创新的广阔空间,使银行决策从“经验依赖”向“数据依据”转化,可以获得更加精准的市场洞察能力和经营管理能力;大数据催生出很多新的金融业态来直接瓜分传统商业银行市场,银行业的生存发展受到挑战。
近年来,大数据已经成为社会关注的热点,并不断改变着人们的认知和生活方式。两会政府工作报告指出,“设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。”大数据首次作为优化产业结构的一项创新国家战略被提出。大数据时代,银行业同样面临着一场经营方式上的变革,大数据为银行创造了深化客户挖掘、加快产品创新的广阔空间,使银行决策从“经验依赖”向“数据依据”转化,可以获得更加精准的市场洞察能力和经营管理能力;大数据催生出很多新的金融业态来直接瓜分传统商业银行市场,银行业的生存发展受到挑战,产品虚拟化、服务虚拟化与管理虚拟化对传统银行业的运营模式带来巨大的冲击。在此背景下,挖掘利用大数据的能力将成为决定银行竞争力的关键。
一、大数据带来的机遇与挑战
数据的潜在资产价值无处不在,预示着一个创新时代的来临。数据作为资源的再利用价值为银行业金融创新提供了可能并带来驱动力,农业银行正面临着前所未有的机遇和挑战。
1.机遇
第一,农业银行可以获得更广阔的业务发展空间。商业银行提供的服务和产品存在较大同质性,商业银行需要通过大数据进行金融创新实施差异化。社交媒体兴起为银行创造了全新的客户接触渠道,银行网点、PC终端、移动设备、传感器等多种渠道产生的结构化和非结构化的海量数据,为银行加快产品创新并深化客户挖掘提供了广阔空间。第二,农业银行可以获得更精准的决策判断能力。大数据将使银行决策从经验依赖向数据依据转化,将在深入了解和把握银行自身乃至市场状况的基础上,更加科学地评价经营业绩,引导银行业务科学健康发展。第三,农业银行可以获得更优秀的经营管理能力。大数据引发银行业的经营管理变革,在资产负债管理、信贷及风险控制、成本核算、营销活动、绩效考核等方面都发挥着重要的作用。
2.挑战
大数据给农业银行带来的挑战主要来自两个方面。一方面,要求农业银行具有数据获取和利用的能力。一是经过多年的信息化建设,银行积累了海量的数据,目前农业银行存贷业务的客户信息结构化数据较丰富,其他业务领域的数据还比较匮乏,全数据采集需突破传统业务边界和商业合作模式。二是实现低成本、低能耗、高可靠的数据存储,是农业银行大数据体系建设的关键环节。三是实现在复杂数据中寻找规律,发现价值,对商业银行数据处理能力提出很高的要求,打造发现和利用数据的能力是农业银行成功实施大数据战略的又一个关键因素。另一方面,要求农业银行有效应对大数据时代商业运营模式变革带来的挑战。在产品与服务方面,互联网金融、移动金融、金融IC卡的推广逐步改变银行向客户提供产品和服务的形式;在管理方面,数字证书、数据信息以及信息化的流程管理,要求传统商业银行的经营模式必须符合大数据时代的特征,借助大数据实现跨越式的发展。
二、农业银行大数据战略:数据治行
紧跟大数据时代的步伐,农业银行积极推进大数据平台建设及大数据的价值应用,确立了“大数据体系建设必须以应用为核心,数据平台开发与业务应用统筹考虑,要做好内部的数据治理,逐步拓展数据来源范围,充分利用内外部数据资源,不断提升对全行经营管理的支撑水平。”的总体战略思想,即:数据是基础,应用是目标,平台是支撑,治理是保障。
1.强化数据治行理念
大数据革命必将颠覆银行传统观念和经营模式。通过营造“数据治行”的文化,建立分析数据的习惯,落实全行的数据标准和数据治理,切实提升“大数据”开发利用的综合能力,将现有数据转化为信息资源,让决策更加有的放矢,让发展更加贴近市场需求。
2.建设大数据平台
构建处理能力强、扩展性好、开放度及共享度高的大数据存储加工平台,整合行内外、各种形态、跨历史周期的海量数据,并构建统一、全面、稳定的企业级数据模型,为大数据的分析利用提供基础的数据、环境、模型及配套工具等全方位立体式支撑。
3.打造数据分析应用体系
构建适应大数据分析的多功能、跨渠道、多粒度的分析挖掘模型和应用体系,为服务质量改善、经营效率提升、金融模式创新提供支持。通过对海量数据的深度分析,全方位调整产品结构、营销模式,从根本上提高风险管理、成本绩效管理、资产负债管理和客户关系管理水平。
4.实现智慧银行的目标
智慧银行是指,通过大数据技术不断优化业务办理流程,高效配置金融资源,敏锐洞察并引领客户需求的高度智能化的金融商业形态。智慧银行可提供“银行始终在客户身边”的全场景金融服务,为客户创造最佳服务体验。
三、农业银行大数据平台概述
经过多年的努力探索,农业银行在大数据平台建设的道路上锐意开拓,大胆创新,逐步形成了以四大基础平台、五类数据服务为核心的大数据平台。
1.四大基础平台
(1)企业级数据仓库
随着银行业数据利用能力的逐步提升,业务分析呈现跨领域分析、高度整合分析、长周期历史分析等特点,企业级数据仓库通过对行内跨领域海量数据的高度整合和模型化,形成对客户、账务、产品等的统一视图,使大数据分析成为可能。农业银行企业级数据仓库以存储和处理结构化数据为主要目标,全面涵盖了农业银行存、贷、中间业务等行内业务条线的核心类数据,实现PB级数据的高效存储,可以满足全行在各个领域数据分析和价值发现的各类需求,并为全行数据治理提供有力的支撑。如通过网点的多维度、全方位、长历史周期数据挖掘给出网点资源配置建议,提升运营效率,优化业务流程。
(2)信息共享平台
信息共享平台以存储和处理行内非结化数据为主,辅以来自行外的社会数据。基于非结构化数据的分析和深度挖掘,在客户关系管理、中小企业信贷、风险管理、品牌建设等众多领域发挥了重要的作用。如基于对社交网络各类非结构化数据的综合分析可以获取行外目标客户;通过机器学习、语音识别、情绪识别等技术,对客服语音记录进行深度挖掘,发现客户的需求。
(3)实时流计算平台
传统数据计算平台多以批量计算为主,数据处理能力较强,但时效性较差。农业银行的实时流计算平台采用业界最先进的流计算框架,实现数据的快速采集、交换、处理和应用,主要用于实时营销、实时客户服务、欺诈监控、大额动账监控、系统运营监控等各类对时效性要求比较高的业务场景。如结合持卡人的行为偏好为客户实时推荐精准的营销信息、优惠信息和特惠商户信息,并为特定客户群体提供实时的有针对性的服务提示。
(4)高性能数据处理平台
海量数据的分析挖掘亟须一个高性能环境的支撑,农业银行高性能数据处理平台采用大内存处理、分布式、闪存等新技术,以高性能计算为主要特点,实现对海量结构化数据、非结构数据等进行综合处理、全面分析和深度挖掘。如通过大数据语义分析和情绪分析追踪海量网络信息蕴藏的经济金融“微信号”,借此判断未来的市场走势,为前瞻性风险管理提供参考。
2.五类数据服务
农业银行基于四大基础平台的优势,大力发展应用系统建设,形成了五大类数据服务形式有机结合的数据服务体系。
(1)指标检索服务
通过构建全行统一的指标库,为各个业务条线提供常用指标的检索服务,在此基础上提供各类经营管理、监管报送等指标采集、加工及报送服务。
(2)即席查询服务
采用特定的工具,构建功能强大的查询支持库,满足各类灵活查询、临时查询及特殊复杂查询需求。如果说报表是经营管理的瞭望塔,那么灵活的即席查询就是执行经营决策的指南针。以客户营销为例,即席查询服务可以为全行的客户经理提供多角度的客户信息查询,针对当前市场热点,提供具体的业务指导。
(3)定制化信息服务
通过iReport智能资源视窗对信息进行统一管理、分层检索、灵活配置和个性展示,并针对用户的不同需求、不同层次及不同偏好,提供定制化、个性化的信息订阅,联动邮件、短信、微信等渠道提供主动信息推送服务。
(4)多维分析服务
多维分析可以帮助业务人员实现多维度、多视图、多层次的分析,并可以通过下钻、上钻、切片、旋转等操作,提供更加动态、智能的数据分析,发现数据背后的规律。如从机构、时间、客户、产品类型、渠道、营销活动等多个维度对产品盈利情况进行综合分析,进而有效推动产品优化和创新。
(5)深度数据挖掘服务
海量数据中蕴含的规律和价值通常不直观,大数据的显著特点之一就是海量数据的知识发现和数据挖掘。农业银行基于大数据平台构建了多个特定领域或主题的数据挖掘实验室,包括客户洞察及精准营销、信用评价及风险评估、舆情分析与客户情感管理等,紧跟市场发展动态,直面业务热点、难点,充分挖掘大数据的巨大价值,为业务发展和经营决策提供更加深入的洞察和更加有力的支撑。
四、农行大数据应用实践
农业银行在构建大数据体系时坚持以应用为核心,统筹部署数据平台开发与业务应用,加强业务创新与数据利用的良性迭代,实现传统业务和新型业态的融合发展,充分发挥了数据对全行业务发展和经营管理的支撑作用。借助大数据这把利剑,实现了“营销更精准、服务更贴心、管理更精细、监管更透明、风险更可控、决策更智能”,有效促进了全行经营理念、业务运营、组织流程的不断创新,为全行业务发展和经营管理提供了有力的科技引擎。以下三类应用案例可充分说明情况。
1.精准营销
基于大数据的客户营销“三步曲”:获取客户、客户画像、精准营销(如图1所示)。通过大数据强大的信息获取和处理能力,充分挖掘行内外的潜在客户;通过大数据实现对客户的360°立体画像,在掌控客户行为、洞察客户情感的基础上,准确地预测客户需求,从而实现精准营销及交叉营销。
以贵宾客户信用卡精准营销为例,农业银行通过综合行内外数据,应用聚类分析、关联规则发现、决策树等数据挖掘算法,构建了完整的精准交叉营销模型库和应用体系,动态实现目标客户识别、客群划分、优先级划分、产品推荐、渠道推荐等功能。在合适的时间,以合适的渠道,通过合适的方式,为合适的客户推介甚至定制合适的产品,实现差异化、个性化的精准营销。
2.热点分析
农业银行基于大数据平台构建了热点问题专题分析模型库,对当前的热点事件进行定期跟进、深度分析和动态监测,为策略制定、产品创新及运营模式优化等提供有力支持。
以互联网理财客户分析为例,该项分析旨在揭示个人客户购买互联网理财产品与农业银行资金流失的关系。首先采集研究机构等第三方数据,融合内部数据,对整体购买规模进行分析;挖掘购买互联网理财客户的特点,对这一特定客户群体进行综合画像。从而知道“正在发生什么。”然后,采用神经网络、回归等方法,对即将流失的客户进行智能识别,针对不同的客户特点制定不同的客户挽留措施,知道“即将发生什么。”最后,通过对客户和资产流失的深度分析,提出产品层面的创新策略,并给出具体建议;产品优化和创新后,再次综合分析新产品的市场效果,并对产品进行持续优化,实现数据挖掘和产品创新的迭代。
3.客户关系管理
通过对数据的深度挖掘,农业银行构建了全新的、智能的、动态的客户管理及分析应用体系,实现对客户全生命周期的客户关系管理,切实提高对客户的洞察能力和服务水平,实现“以客户为中心”。具体包括以下几方面。
新客户获取:通过对行外和行内数据的深度分析和挖掘,找到潜在客户的特征,并进行客户营销。客户价值提升:深度分析客户综合价值,并通过具体的、有针对性的营销策略提升潜力客户的价值。
客户发展:动态识别客户日常生活中的重要事件,进行事件营销、社交网络营销和同理心营销,提高客户的粘性和忠诚度。
客户成熟:准确洞察忠诚客户的金融需求,并及时感知变化,从而进行差异化服务,真正实现“伴您成长”。
客户衰退:通过持续的数据分析和监测,对衰退客户进行及时的营销干预,激发其活力,发现其新的业务需求。
客户流失预测及挽留:智能识别即将流失的客户,并深度分析其特点,找到客户的痛点,进行有针对性的精准挽留。
在当前这个不断创造奇迹的大数据时代,农业银行将大力推进大数据平台及数据分析应用体系的建设和完善,将数据的价值切实应用到业务发展和经营管理的每一个环节,在大数据时代走出更加坚定、卓有成效、有农业银行特色的金融创新发展之路。